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. Given historical BC weather, traffic, and ferry-
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can accurately predict ferry departures that
will be delayed. The model used for our final
score in Kaggle was an ensemble of 4 models —

model, resulting in a boost in performance.
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Our approach involves ensembles Figure 7: Ensemble 1 feature 2 and 3 prediction probabilities,

Ensemble 1 : :
based on many weak learners, for importances from SHAP analysis AUC-ROC score was 0.72447

example Ensemble 1 shown in

performing models were &

Data Insights:

*  The delayed class is 18.1% of the total data

*  Ferries and routes are highly related (Fig. 3)

*  Number of delays has seasonal patterns (Fig. 4)
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*  Delays are primarily traffic related ensembled, as shown in figure 5. What we tried:
*  Traffic strongly affects particular Ensemble 4 — e Larger ensembles (1024+ model) of minor hyperparameter
routes and ports (Horseshoe Bay) e i LightGaM variations
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* Trees play better with label encoding than one-hot encoding
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classifiers used in each ensembile is also shown. Each ensemble had on off-peak times, implement more efficient loading strategies
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